
Fold

Think about our functions that recurse on lats.  



(define member

(lambda (a lat)

(cond

[(null? lat) #f]

[(equal? a (car lat)) #t]

[else (member a (cdr lat))])))



(define sum

(lambda (lat)

(cond

[(null? lat) 0]

[else (+ (car lat) (sum (cdr lat)))])))



Most functions that recurse on lats have a base 
case where we do something with the empty list, 
do something with the car of the lat, and recurse on 
the cdr of the lat

We can abstract this with a function called foldr
that takes three arguments: a lat, what to return 
when the lat is null, and a function of two variables: 
the car of the lat and the result of recursing on the 
cdr:



(define foldr

(lambda (f base-value lat)

(cond

[(null? lat) base-value]

[else (f   (car lat) 

(foldr f base-value (cdr lat)))])))

Here f is a function of two arguments. You can think 
of these arguments as "the car of the list" and "the 
result of recursing on the cdr of the list".



For example  the member function is

(define member (lambda (a lat)

(foldr (lambda (x y)

(if (equal? x a) #t y))

#f 

lat)))



We can sum a list of numbers with fold:

(define sum 

(lambda (lat)

(foldr + 0 lat)))



It is inefficient to have a recursive function with 
3 arguments, two of which don't change in the 
recursive call.  Here is a better version of foldr:



(define foldr
(lambda (f base-value lat)

(letrec
([helper (lambda (ls)

(cond
[(null? ls) base-value]
[else (f (car ls) 

(helper (cdr ls)))]))
(helper lat)))



We can disentangle the way foldr works on a small 
list.  (foldr f base null) returns base

(foldr f base '(c)) returns (f c base)
(foldr f base '(b c)) returns (f b (f c base))
(foldr f base '(a b c)) returns (f a (f b (f c base)))

If you imagine f as being an arithmetic operator, such 
as +, -, or times, (foldr f op base '(a b c)) gives

(op a (op b (op c base)))
In standard infix notation this is

a op b op c op base
associated from the right.  For this reason, many 
people call this "fold-right".  Dr. Racket calls it "foldr".



For example, (foldr - 0 '(1 2 3 4)) gives
(1 - (2 - (3 - (4-0)))

which is the same as 1 - 2 + 3 - 4, or -2

Foldr-ing - over a vector gives the alternating sum 
of its elements.  Foldr-ing + over a vector gives the 
sum of its elements.  Foldr-ing * gives the product 
of the elements and foldr-ing / gives the 
alternating quotient and product:

(foldr / 1 '(1 2 3 4)) is 1 / 2 * 3 / 4, or 3/8



Of course, you can guess that if there is a foldr
there is also a foldl.  This is defined differently by 
different communities.  The standard Scheme 
definition of "fold-left" just associates from the 
left, so

(fold-left - 0 '(1 2 3 4)) gives
0 - 1 - 2 - 3 - 4   (associated from the left)

or -10



racket follows Haskell and some other languages in 
defining foldl differently.

(foldl op base '(a b c )) is
( op c (op b (op a base)))

This version of foldl starts with the left end of the 
list, forms the operation between the car of the list 
and the base value, then the operation between 
the next entry of the list and this value, and so 
forth.



So we can define this as follows:

(define foldl (lambda (f base lat)
(cond

[(null? lat) base]
[else (foldl f (f (car lat) base) (cdr lat))])))

This is tail recursion with the base variable used as 
an accumulator.

Of course, foldl is already a part of racket so you 
don't need to define it yourself.



You can think of the function f as taking two 
variables, where the first variable is the car of the 
list and the second variable is the result of 
everything you have seen so far.



Perhaps the clearest example of the differences 
between foldr and foldl is the following:

(foldr cons null '(a b c d)) returns (a b c d)

(foldl cons null '(a b c d)) return (d c b a)

That may be the most confusing way you can 
imagine to reverse a lat.


